본문 바로가기
제약 및 의료기기, GMP/제형 및 공정

PCR, RT-PCR, qPCR, RT-qPCR 차이/다른점

by read_with_me 2020. 6. 2.
728x90
728x90

https://www.enzolifesciences.com/science-center/technotes/2017/march/what-are-the-differences-between-pcr-rt-pcr-qpcr-and-rt-qpcr?/

 

TechNote: What are the differences between PCR, RT-PCR, qPCR, and RT-qPCR?

Basic PCR methods have further advanced from simple DNA and RNA detection. Below, we have provided an overview of the different methods of PCR and the reagents we provide at Enzo Life Sciences for your research needs. We aim to help scientists quickly acce

www.enzolifesciences.com

What are the differences between PCR, RT-PCR, qPCR, and RT-qPCR?

Posted By Sarah Neidler
Tags: Molecular BiologySuccessful Research Tips

 

 

Polymerase chain reaction (PCR) is a relatively simple and widely used molecular biology technique to amplify and detect DNA and RNA sequences. Compared to traditional methods of DNA cloning and amplification, which can often take days, PCR requires only a few hours. PCR is highly sensitive and requires minimal template for detection and amplification of specific sequences. Basic PCR methods have further advanced from simple DNA and RNA detection. Below, we have provided an overview of the different PCR methods and the reagents we provide at Enzo Life Sciences for your research needs. We aim to help scientists quickly access PCR reagents to use in their next research project!

PCR(폴리머라아제 연쇄 반응)은 DNA 및 RNA 서열을 증폭 및 검출하기 위해 비교적 간단하고 널리 사용되는 분자 생물학 기술이다. 며칠이 걸릴 수 있는 기존의 DNA 클로닝 및 증폭 방법과 비교할 때 PCR은 몇 시간 밖에 걸리지 않습니다. PCR은 매우 민감하며 특정 서열의 검출 및 증폭을 위해 최소한의 주형이 필요합니다. 기본 PCR 방법은 간단한 DNA 및 RNA 검출에서 더욱 발전했습니다. 아래에서는 다양한 PCR 방법과 Enzo Life Sciences에서 제공하는 시약에 대한 개요를 연구 목적으로 제공했습니다. 우리는 과학자들이 다음 연구 프로젝트에 사용할 PCR 시약에 빠르게 접근 할 수 있도록 돕습니다!

 

PCR

For standard PCR, all you need is a DNA polymerase, magnesium, nucleotides, primers, the DNA template to be amplified and a thermocycler. The PCR mechanism is as simple as its purpose:

1) double-stranded DNA (dsDNA) is heat denatured,

2) primers align to the single DNA strands and

3) the primers are extended by DNA polymerase, resulting in two copies of the original DNA strand.

The denaturation, annealing, and elongation process over a series of temperatures and times is known as one cycle of amplification. Each step of the cycle should be optimized for the template and primer set used. This cycle is repeated approximately 20-40 times and the amplified product can then be analyzed. PCR is widely used to amplify DNA for subsequent experimental use. PCR also has applications in genetic testing or for the detection of pathogenic DNA.

표준 PCR의 경우 DNA 중합 효소, 마그네슘, 뉴클레오티드, 프라이머, 증폭 할 DNA 주형 및 열 순환기(thermocycler)가 필요합니다. PCR 메커니즘은 그 목적만큼 간단합니다 :

1) 이중 가닥 DNA (dsDNA)가 열 변성된다,

2) 프라이머가 단일 DNA 가닥에 정렬되고,

3) 프라이머는 DNA 폴리머 라제에 의해 연장되어, 원래의 DNA 가닥이 2개로 복제된다.

일련의 온도 및 시간에 따른 변성(denaturation), 어닐링(annealing) 및 신장(elongation)이 증폭의 한 사이클로 알려져있다. 사이클의 각 단계는 사용 된 템플릿 및 프라이머 세트에 맞게 최적화되어야합니다. 이 사이클을 대략 20-40 회 반복 한 다음 증폭 된 생성물을 분석 할 수있다. PCR은 후속 실험용 DNA 증폭에 널리 사용됩니다. PCR은 또한 유전자 검사 또는 병원성 DNA의 검출에 적용 할 수 있습니다.

As PCR is a highly sensitive method and very small volumes are required for single reactions, preparation of a master mix for several reactions is recommended. The master mix must be well mixed and then split by the number of reactions, ensuring that each reaction will contain the same amount of enzyme, dNTPs and primers. Many suppliers, such as Enzo Life Sciences, also offer PCR mixes that already contain everything except primers and the DNA template.

PCR은 매우 민감한 방법이며 단일 반응에는 매우 적은 양이 필요하므로 여러 반응에 대한 마스터 믹스를 준비하는 것이 좋습니다. 마스터 믹스는 잘 혼합 된 다음 반응 수로 나눠야하며 각 반응에 동일한 양의 효소, dNTP 및 프라이머가 포함되도록 해야합니다. Enzo Life Sciences와 같은 많은 공급 업체는 또한 프라이머와 DNA 템플릿을 제외한 모든 것을 포함하는 PCR 믹스를 제공합니다.

Guanine/Cytosine-rich (GC-rich) regions represent a challenge in standard PCR techniques. GC-rich sequences are more stable than sequences with lower GC content. Furthermore, GC-rich sequences tend to form secondary structures, such as hairpin loops. As a result, GC-rich double strands are difficult to completely separate during the denaturation phase. Consequently, DNA polymerase cannot synthesize the new strand without hindrance. A higher denaturation temperature can improve this and adjustments towards a higher annealing temperature and shorter annealing time can prevent unspecific binding of GC-rich primers. Additional reagents can improve the amplification of GC-rich sequences. DMSO, glycerol and betaine help to disrupt the secondary structures that are caused by GC interactions and thereby facilitate separation of the double strands.PCR은 매우 민감한 방법이며 단일 반응에는 매우 적은 양이 필요하므로 여러 반응에 대한 마스터 믹스를 준비하는 것이 좋습니다. 마스터 믹스는 잘 혼합 된 다음 반응 수로 나눠야하며 각 반응에 동일한 양의 효소, dNTP 및 프라이머가 포함되도록해야합니다. Enzo Life Sciences와 같은 많은 공급 업체는 또한 프라이머와 DNA 템플릿을 제외한 모든 것을 포함하는 PCR 믹스를 제공합니다.PCR은 매우 민감한 방법이며 단일 반응에는 매우 적은 양이 필요하므로 여러 반응에 대한 마스터 믹스를 준비하는 것이 좋습니다. 마스터 믹스는 잘 혼합 된 다음 반응 수로 나눠야하며 각 반응에 동일한 양의 효소, dNTP 및 프라이머가 포함되도록해야합니다. Enzo Life Sciences와 같은 많은 공급 업체는 또한 프라이머와 DNA 템플릿을 제외한 모든 것을 포함하는 PCR 믹스를 제공합니다.


Hot Start PCR

Unspecific amplification is a problem that can occur during PCR. Most DNA polymerases that are used for PCR, work best at 68 - 72°C. Therefore, the chosen extension temperature should be in this range. The enzyme can, however, also be active to a lesser degree, at lower temperatures. At temperatures that are far below the annealing temperature, primers tend to bind non-specifically, which can lead to non-specific amplification, even if the reaction is set up on ice. This can be prevented by using polymerase inhibitors that dissociate from the DNA polymerase only once a certain temperature is reached. The inhibitor can be an antibody that binds the polymerase and denatures at the initial denaturation temperature.
비특이적 증폭은 PCR 중에 발생할 수있는 문제입니다. PCR에 사용되는 대부분의 DNA 폴리머 라제는 68-72 ° C에서 가장 잘 작동합니다. 따라서 선택한 확장 온도가 이 범위에 있어야 합니다. 그러나, 효소는 또한 더 낮은 온도에서 더 적은 정도로 활성화 될 수있다. 어닐링 온도보다 훨씬 낮은 온도에서, 프라이머는 비특이적으로 결합하는 경향이 있으며, 이는 반응이 얼음 상에 설정 되더라도 비특이적 증폭으로 이어질 수 있다. 이는 특정 온도에 도달 한 후에 만 DNA 폴리머 라제에서 분리되는 폴리머 라제 억제제를 사용하여 방지 할 수 있습니다. 억제제는 초기 변성 온도에서 폴리머 라제에 결합하고 변성되는 항체 일 수있다.

RT-PCR

Reverse transcription PCR, or RT-PCR, allows the use of RNA as a template. An additional step allows the detection and amplification of RNA. The RNA is reverse transcribed into complementary DNA (cDNA), using reverse transcriptase. The quality and purity of the RNA template is essential for the success of RT-PCR. The first step of RT-PCR is the synthesis of a DNA/RNA hybrid. Reverse transcriptase also has an RNase H function, which degrades the RNA portion of the hybrid. The single stranded DNA molecule is then completed by the DNA-dependent DNA polymerase activity of the reverse transcriptase into cDNA. The efficiency of the first-strand reaction can affect the amplification process. From here on, the standard PCR procedure is used to amplify the cDNA. The possibility to revert RNA into cDNA by RT-PCR has many advantages. RNA is single-stranded and very unstable, which makes it difficult to work with. Most commonly, it serves as a first step in qPCR, which quantifies RNA transcripts in a biological sample.
역전사 PCR 또는 RT-PCR은 RNA를 주형으로 사용할 수 있습니다. 추가 단계는 RNA의 검출 및 증폭을 허용한다. RNA는 역전사 효소를 사용하여 상보 DNA (cDNA)로 역전사된다. RNA 주형의 품질과 순도는 RT-PCR의 성공에 필수적입니다.RT-PCR의 첫 번째 단계는 DNA / RNA 하이브리드의 합성입니다. 역전사 효소는 또한 하이브리드의 RNA 부분을 분해하는 RNase H 기능을 갖는다. 이어서 단일 가닥 DNA 분자는 역전사 효소의 DNA- 의존적 DNA 폴리머 라제 활성에 의해 cDNA로 완성된다. 제 1 가닥 반응의 효율은 증폭 과정에 영향을 줄 수있다이제부터는 표준 PCR 절차를 사용하여 cDNA를 증폭시킵니다. RT-PCR에 의해 RNA를 cDNA로 되돌릴 수있는 가능성은 많은 장점이있다. RNA는 단일 가닥이며 매우 불안정하여 작업하기가 어렵습니다. 가장 일반적으로, 그것은 qPCR의 첫 번째 단계로서 생물학적 샘플에서 RNA 전 사체를 정량화합니다.

qPCR and RT-qPCR

Quantitative PCR (qPCR) is used to detect, characterize and quantify nucleic acids for numerous applications. Commonly, in RT-qPCR, RNA transcripts are quantified by reverse transcribing them into cDNA first, as described above and then qPCR is subsequently carried out. As in standard PCR, DNA is amplified by 3 repeating steps: denaturation, annealing and elongation. However, in qPCR, fluorescent labeling enables the collection of data as PCR progresses. This technique has many benefits due to a range of methods and chemistries available.

정량적 PCR (qPCR)은 수많은 응용 분야에서 핵산을 검출, 특성화 및 정량화하는 데 사용됩니다. 일반적으로, RT-qPCR에서, RNA 전사체는 전술 한 바와 같이 먼저 cDNA로 역전사함으로써 정량화되고, 이어서 qPCR이 수행된다. 표준 PCR에서와 같이, DNA는 변성, 어닐링 및 신장의 3 가지 반복 단계에 의해 증폭된다. 그러나, qPCR에서, 형광 표지는 PCR이 진행됨에 따라 데이터의 수집을 가능하게한다. 이 기술은 다양한 방법과 화학으로 인해 많은 이점이 있습니다.



In dye-based qPCR (typically green), fluorescent labeling allows the quantification of the amplified DNA molecules by employing the use of a dsDNA binding dye. During each cycle, the fluorescence is measured. The fluorescence signal increases proportionally to the amount of replicated DNA and hence the DNA is quantified in “real time”. The disadvantages to dye-based qPCR are that only one target can be examined at a time and that the dye will bind to any ds-DNA present in the sample.

염료-기반 qPCR (전형적으로 녹색)에서, 형광 표지는 dsDNA 결합 염료를 사용함으로써 증폭 된 DNA 분자의 정량을 허용한다. 각주기 동안, 형광이 측정된다. 형광 신호는 복제 된 DNA의 양에 비례하여 증가하므로 DNA는 "실시간"으로 정량화됩니다. 염료 기반 qPCR의 단점은 한 번에 하나의 대상 만 검사 할 수 있고 염료가 시료에 존재하는 ds-DNA에 결합한다는 것입니다.



In probe-based qPCR, many targets can be detected simultaneously in each sample but this requires optimization and design of a target specific probe(s), used in addition to primers. There are several types of probe designs available, but the most common type is a hydrolysis probe, which incorporates the use of a fluorophore and quencher. Fluorescence resonance energy transfer (FRET) prevents the emission of the fluorophore via the quencher while the probe is intact. However, during the PCR reaction, the probe is hydrolyzed during primer extension and amplification of the specific sequence it is bound to. The cleavage of the probe separates the fluorophore from the quencher and results in an amplification-dependent increase in fluorescence. Thus, the fluorescence signal from a probe-based qPCR reaction is proportional to the amount of the probe target sequence present in the sample. Because probe-based qPCR is more specific than dye-based qPCR, it is often the technology used in qPCR diagnostic assays.
프로브 기반 qPCR에서 많은 시료를 각 시료에서 동시에 검출 할 수 있지만 프라이머와 함께 사용되는 타겟 특정 프로브의 최적화 및 설계가 필요합니다. 사용 가능한 프로브 디자인에는 여러 가지 유형이 있지만 가장 일반적인 유형은 가수 분해 프로브로 형광 단 및 소광 제의 사용을 통합합니다. 형광 공명 에너지 전달 (FRET)은 프로브가 손상되지 않은 상태에서 소광 제를 통한 형광 단의 방출을 방지합니다. 그러나, PCR 반응 동안, 프로브는 프라이머 연장 및 프로브에 결합 된 특정 서열의 증폭 동안 가수 분해된다. 프로브의 절단은 형광 단으로부터 형광 단을 분리하고, 형광-증폭-의존적 증가를 초래한다. 따라서, 프로브 기반 qPCR 반응으로부터의 형광 신호는 샘플에 존재하는 프로브 표적 서열의 양에 비례한다. 프로브 기반 qPCR은 염료 기반 qPCR보다 더 구체적이기 때문에 종종 qPCR 진단 분석에 사용되는 기술입니다.

 

 


Further details can be found on our website: AMPIGENE® PCR & qPCR Solutions. Enzo’s mission is to provide low-cost, easily adaptable, and effective solutions to the diagnostic market. Our AMPIPROBE® platform uses novel PCR design to enable the quantification of nucleic acids for clinically relevant targets. Our assays are easily adaptable for laboratory use and cost-effective, without compromising on quality and performance. Compatible on open PCR platforms, AMPIPROBE® assays can be validated on existing instrumentation, eliminating the need for capital expenditures.
자세한 내용은 당사 웹 사이트 (AMPIGENE® PCR & qPCR Solutions)에서 확인할 수 있습니다. Enzo의 임무는 진단 시장에 저렴하고 쉽게 적용 가능하며 효과적인 솔루션을 제공하는 것입니다. 당사의 AMPIPROBE® 플랫폼은 새로운 PCR 설계를 사용하여 임상 적으로 관련된 표적에 대한 핵산의 정량화를 가능하게합니다. 당사의 분석은 품질과 성능을 저하시키지 않으면 서 실험 실용으로 쉽게 적용 할 수 있고 비용 효율적입니다. 개방형 PCR 플랫폼과 호환되는 AMPIPROBE® 분석은 기존 계측에서 검증 할 수있어 자본 지출이 필요 없습니다.



The summary table below highlights the PCR products available for PCR, RT-PCR and qPCR. Please click on the product of interest for more information or contact our Technical Support Team for further assistance.
Check out our 10 tips for successful Real Time qPCR!

반응형

댓글